三角函数公式大全表格
1、倍角公式。
(1)Sin2A=2SinA*CosA。
(2)Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1。
(3)tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )。
2、降幂公式。
(1)sin^2(α)=(1-cos(2α))/2=versin(2α)/2。
(2)2cos^2(α)=(1+cos(2α))/2=covers(2α)/2。
(3)tan^2(α)=(1-cos(2α))/(1+cos(2α))。
3、推导公式。
(1)tanα+cotα=2/sin2α。
(2)tanα-cotα=-2cot2α。
(3)1+cos2α=2cos^2α。
(4)4-cos2α=2sin^2α。
三角函数公式大全
1、公式一:设α为任意角,终边相同的角的同一三角函数的值相等
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
cot(2kπ+α)=cotα(k∈Z)
2、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
3、公式三:任意角α与-α的三角函数值之间的关系
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
5、公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
6、公式六:π/2±α与α的三角函数值之间的关系
sin(π/2+α)=cosα
sin(π/2-α)=cosα
cos(π/2+α)=-sinα
cos(π/2-α)=sinα
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
cot(π/2+α)=-tanα
cot(π/2-α)=tanα